Nonlinear Model Predictive Control for pH Neutralization Process based on SOMA Algorithm
نویسندگان
چکیده
In this work, the pH neutralization process is described by a neural network Wiener (NNW) model. A nonlinear Model Predictive Control (NMPC) is established for the considered process. The main difficulty that can be encountered in NMPC is solving the optimization problem at each sampling time to determine an optimal solution in finite time. The aim of this paper is the use of global optimization method to solve the NMPC minimization problem. Therefore, we propose in this work, to use the Self Organizing Migrating Algorithm (SOMA) to solve the presented optimization problem. This algorithm proves its efficiency to determine the optimal control sequence with a lower computation time. Then the NMPC is compared to adaptive PID controller, where we propose to use the SOMA algorithm to formulate the PID in order to determine the optimal parameters of the PID. The performances of the two controllers based on the SOMA algorithm are tested on the pH neutralization process. Keywords—Nonlinear model predictive control; optimization; SOMA algorithm; adaptive PID; pH neutralization process
منابع مشابه
An ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models
Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کامل